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The disentanglement time of the craze fibrils 
in polymethylmethacrylate 

P. TRASSAERT,  R. SCHIRRER 
Ecole d'app/ication des hauts po/ymeres, 4 rue Boussingault, 67000 Strasbourg, France 

A breaking time has been defined for the fibrils in the craze at the tip of a steady-state 
moving crack. It has been shown that, for polymethylmethacrylate above the critical 
temperature of --20 ~ C, the fibrils of the craze at the crack tip break due to a thermally 
activated process. The activation energy is equal to 23 kcal mo1-1, which corresponds 
fairly closely to the activation energy of the/3 relaxation. Then, the breaking time is 
probably a disentanglement time rather than a breaking time of chains, and this may be 
used to explain the time-temperature behaviour of the macroscopic fracture toughness. 

1. Introduction 
Many polymers develop crazes before or during 
breaking. The craze is a very small zone at the 
crack tip where the polymer is highly oriented. 
The polymeric material is drawn out of the bulk 
and forms fibrils interspersed by microscopic 
voids. One of the most important problems relating 
to crack propagation in polymers is the breakage 
of the fibrils of the craze. So, the study of 
polymer fracture is actually the study of the 
formation of the craze and the breakage of the 
fibrils of the craze. 

The phenomenon of craze formation in brittle 
polymers is now quite well known. It has recently 
been shown that the fibrils grow by pulling fresh 
material out of the bulk rather than by increasing 
their draw ratio [1, 2]. The process seems to be 
thermally activated by the /3 relaxation [3]. The 
draw ratio of the fibrils is nearly constant over the 
whole craze volume. Nevertheless, it is slightly 
higher in the so-called "mid-rib" region and also at 
the craze end and tip [4, 5]. The draw ratio of the 
fibrils may be understood as some kind of natural 
draw ratio of the polymer. The molecules in the 
fibrils are highly oriented: the fibrils recover their 
original bulk structure when they are heated to 
even a mere 20 degrees below the glass transition 
temperature [6]. 

The problem of fibril breakage is much less well 
known, and it is not very easy to decide whether 
the fibrils break in the mid-rib region because of 

additional creep or some other mechanism: 
slippage and disentanglement, fibril rupture 
through breakage of chains etc [7]. The craze 
opening does not seem to be an efficient fracture 
criterion for the fibrils because it is related not to 
the extension ratio of the fibrils but to their 
length which is simply proportional to the amount 
of fresh material pulled out of the bulk. It has 
been shown that there are probably two mechan- 
isms of breakage, depending on the temperature 
[8]. Above a certain critical temperature the craze 
breaks smoothly, probably in the mid-rib region, 
leaving two craze layers on each fracture surface. 
Below that temperature, the craze breaks in a very 
irregular way, forming many side crazes and leav- 
ing a fairly rough fracture surface. 

2. Theory: the definition of the breaking 
time of the fibrils 

In this paper another description of the craze fibril 
breakage will be developed, in order to associate 
an activation energy to the breakage phenomenon: 
the life-time r of the craze fibril under a certain 
load or the time during which a fibril can carry a 
certain load before breakage. It is a convenient 
way of displaying the breakage properties of the 
craze fibrils and might be an intrinsic property of 
the fibrils. As will be seen later, this time could be 
interpreted as the disentanglement time of the 
macromolecules of the fibril: the disentanglement 
time of the fibrils. 
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If  a single planar crack in the plane strain state 

is propagated above the critical temperauture,  a 

single craze exists at the crack tip with a well 
known shape [9] which can be observed by means 

of  interferometry [10]. The c rack-craze  system 
may propagate in three ways, depending on the 
loading level and the craze size as shown in Fig. 1. 

1. The case of  craze growth (which seems to be 
thermally activated) has been studied by D611 et al. 
[11]. 

2. Experiments have been carried out  for the case 
of  crack growth without  craze growth (the fibrils 
breakage) by  using a very long craze (obtained by 
the craze growth technique) suddenly and strongly 
loaded. Photographs of  the interference patterns 
were taken at a rate of  3 pictures per second. The 
craze being longer than the craze at the tip of  a 
steady-state propagating crack, case (b) of  Fig. 1 
arises. As shown in Fig. 2, the craze tip remains 
immobile,  whereas the crack tip propagates into 

the craze. These experiments clearly show that 

the fibril growth at the craze tip and the fibril 

breakage at the craze end are two independent 
mechanisms. 

3. The third case of  Fig. 1 is the case of  a 

steady-state propagating crack: the craze tip moves 
at the same velocity as the crack tip.  The rate of  
fibril production is the same as the rate of  fibril 
breakage. Then the breakage time of  a fibril can be 
easily defined as the longest time a fibril can carry 
the stress o e at the craze boundary before 
breakage. Notice that the "oldest"  part of  a fibril 
growing by pulling fresh material from the bulk is 
the middle of  the fibril (Fig. 3). If S is the craze 
length and da/dt the crack-craze  velocity, the 
breaking time r is: 

T(%) = S/(da/dt) (1) 

for the part of  the fibril drawn out of  the bulk at 
the crack tip. 

Figure 1 A, B and C show, at 2 successive moments, 3 types of evolution of a moving crack-craze system. (a) Static 
fatigue craze growth: new material flows into the craze. No crack growth. Generally a transient state. (b) No material 
flows into the craze but the craze fibrils break: the crack tip moves into the craze. Generally a transient state. (c) 
Steady-state propagation: craze growth and craze breakage occur at the same rate. (d) Random rupture of the craze: 
discontinuous phenomenon, not studied here. 
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Figure 2 The in te r fe rence  pa t t e rn  at  successive t imes  of  a long craze sudden ly  and s t rongly  loaded:  the  craze t ip  r ema ins  
i m m o b i l e  whereas  the  c rack  t ip  moves  in to  the craze.  The  f ibr i ls  b r eak  u n t i l  the  craze l eng th  is suff ic ient  for s teady-  

s ta te  p ropaga t ion .  The  stars show a defec t  on  the  f rac ture  surface tha t  proves  the craze t ip does  n o t  move.  
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Figure 3 The age of the molecules in the craze fibrils pro- 
duced by pulling fresh material out of the bulk and propa- 
gating at a constant velocity da/dt: the molecule M' enters 
the craze at point N' and carries the load e during a time 
lapse r = X/(da/dt). The "oldest" part of the fibril is the 
middle, where X = S. 

3. Experimental procedure and results 
In order to measure r ,  a single c rack-craze  system 
was propagated in a compact tension specimen 
using an apparatus similar to that  described in 
[12] and having a heating chamber as described in 
[8]. The propagation velocity was constant and 
obtained by static loading at temperatures o f - -  10, 
20 and 60 ~ C in polymethylmethacryla te  (PMMA). 
The velocity was varied between 10 -s and 
0.1 mm sec -1. Photographs of  the interference pat- 
tern of  the craze were taken and the load on the 
sample measured. The experimental  results 
obtained are the fracture toughness Kae, the craze 
length S and the craze width COD as a function of  
crack speed and temperature.  These curves are 

shown in Fig. 4. By means of  the Dugdale model  the 
stress at the craze boundary can be estimated as:  

[ 7r ~1/2 

By means of  Equation 1, r is calculated as a func- 
t ion of  %. Fig. 5 shows the obtained breaking 
time as a function of  the stress oc at the craze 
boundary.  There are 3 curves for the 3 tempera- 
tures - - t 0 ,  20 and 60~ The breaking time is 
always between 0.1 and 1000sec,  due to the 
c rack-craze  propagation speed, which can only be 
selected between i0  -s and 0.1 mmsec  -1. Despite 
some scatter of  the experimental points, it can be 
clearly seen that  the 3 curves may be super- 
imposed by a simple horizontal  shift along the 
time axis, as shown in Fig. 6. The master curve on 
that figure shows the breaking time as a function 
of  the stress over 8 decades of  time. The left end 
of  the plot (0.001 sec) corresponds to a crack velo- 
city of  about 3 0 m m s e c  -1, ( too fast to follow 

under the microscope) and the right end (10 s sec) 
to 3 x 10-Tmmsec -1, which is a very low speed 

difficult to achieve practically. None of  the other 

curves (K1 e, S, COD) can be shifted like r to 
obtain a master curve. Therefore r ,  which is a 

property obtained by combining Klc  and S, is 
probably more significant than Kle or S alone. 

The experiments must be very carefully 
conducted to keep the final scatter at an accept- 

able level. The values of  K1, in particular, are very 
sensitive to twisted crack planes or imperfect 
crazes over the whole sample thickness. The 
physical or chemical ageing of  PMMA seems to 

play an important  role in the shape of  the craze. 
Much care has been taken to measure reproducible 
values of  Kle and craze shape. Very old PMMA 
sheets (5 years old) gave no reproducible values 
and irregular crazes, whereas moderately old sheets 
(1 year old) gave good results. The sheets must not 
be too fresh, because the physical ageing may be 
visible. 

4. Discussion and molecular interpretation 
4.1. Relation between breaking time and 

fracture toughness 
The macroscopic fracture toughness Kle can be 
easily calculated as a function of  r and the craze 

stress Oe by means of  the Dugdale model. 

S = rrK]c/8O ~. (3) 

Combining Equations 1 and 3: 

K~ c = 8ro2~-l(da/dt) (4) 

Now the fracture toughness Kle is written as a 
combination of  two other material properties: r 

and %. r has been defined above, and ae, as 
defined by Dugdale, is the stress required to trans- 
form bulk material into craze material and is the 
stress at the craze boundary for an equilibrium 
craze. It has also been shown that % has almost 
the same value as the macroscopic yield stress 
[13]. The advantage of  writing Klc  as a function of  
r and o e is that  these properties may be more 
easily interpreted in molecular terms, r and o e 
being time and temperature dependent Kle is too.  
The calculations are based on the Dugdale model,  
which is a rather rough model  of  the craze. Never- 
theless the use of  a more refined model  would not 
change the overall result and the breaking time 
would remain the same. Only the numerical value 
of  the stress applied at the fibrils would be slightly 
different. Anyhow, the true stress on the fibrils is 
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Figure 4 3 types of experimental values recorded as a function of the propagation velocity at 3 temperatures. Notice 
that Kle for the 3 temperatures may more or less be drawn on a master curve by a horizontal shift (Fig. 4d), whereas S 
and COD may not. +: -- 10 ~ C, 0:20 ~ C and X: 60 ~ C. 

much greater than %, because there is at least 50% 
void between the fibrils and on Figs. 5 and 6 the 
stress scale should be multiplied by  at least a 
factor 5. 

4.2. The activation energy of the fibrils 
breakage 

The master curve on Fig. 6 shows that  the break- 
ing time of  the  fibrils is thermally activated. In 
Fig. 7, two Arrhenius plots for PMMA obtained 
by means of  mechanical loss peak measurements 
and the breaking time measurements are shown. 
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The mechanical loss peak is the known /3 peak. 
Many authors have already associated the /7 loss 
peak with the macroscopic fracture properties 
[14]. Here, it is shown that the breakage of  the 
microscopic craze fibril itself is controlled by a/7 
process in the experimental conditions used. This 
process being a creep phenomenon,  it is inferred 
that the craze fibrils break by chain slippage or 
disentanglement of  the physical network rather 
than by chain breakage. Therefore the term of  
disentanglement time has been used. This type of  
fibril breakage has several consequences: 
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Figure 5 The breaking time or 
disentanglement time of the 
fibrils of the craze calculated 
from Klc, S and da/dt by means 
of the Dugdale model of the 
craze. (Same symbols as in Fig. 
4). 

1. As shown in Fig. 3, since the oldest part of  
the fibrils (therefore the first to break) is the 
middle, the craze should break in the mid-rib 
region. This is actually observed in some experi- 
mental cases. 

2. If  the/3 process is frozen in (at low tempera- 
ture), the fracture mechanism of  the fibrils must 
change: this explains the results previously 
obtained [8]: it has been shown that the crack tip 
configuration changes from a single craze type, 
leaving a smooth fracture surface, to a multiple 
craze leaving a rough surface when the tempera- 
ture drops below Tt~. Then the fibrils no longer 

break by continuous disentanglement in the mid- 
rib and the fracture occurs anywhere in the craze 
(case (d) of Fig. 1). 

3. The macroscopic fracture property Kle being 
controlled by two microscopic properties (Equa- 
tion 4) following a ~ process, it is obvious that the 
macroscopic properties exhibit a t ime-tempera-  
ture behaviour connected with the t3 peak. 

4. It may be difficult to understand how a 
secondary relaxation can be responsible for a full 
disentanglement of  the macromolecular coils: this 
can be explained by the fact that the molecular 
movements in the craze fibrils are probably much 

DISENTANGLEMENT TIME 

100- 

I E - -  

E 
Z 

m 

[ .u  

50- 

-3 
~l , l , ,q  , I , l , , ,  I I , , l I , ,  I , , , I H ,  I I l l l , , , I  I I I , ,  q ~ l , , I , I  I i , , , , , i  

-2 -1 0 1 2 3 4 5 
TIME (sec) 

Figure 6 The master curve of the breaking time (Fig. 5) 7. Notice that r can be drawn on a master curve much more 
easily than Kle. (Same symbols as in Fig. 4). 
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Figure 7 The arrhenius plot for PMMA of the # relaxa- 
tion peak and of the breaking time r. Activation energy: 
c~ peak: 80kcalmo1-1, # peak: 20kcalmol-1, and r break- 
ing time: 23 kcalmo1-1. 

freer than in the bulk material  because the fibril 

diameter  is o f  the same order o f  magni tude as the 

coil d iameter  [15], giving a high surface/volume 

ratio and hence leaving much  more  free volume.  

This has already been shown by the  fact that  the 

fibrils shrink at tempera tures  as low as Tg - 3 0 ~  

[6]. 
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